The global automotive polymer composites market size was valued at USD 6.40 billion in 2016 and is expected to reach USD 11.62 billion by 2025, expanding at an estimated CAGR of 6.8% over the forecast period. The market is characterized by the presence of large-scale automobile production and stringent regulations implemented in the automobile industry.
The auto industry is witnessing challenges in aligning their production or assembly processes with enhanced material properties and innovative product design, specifically for large-volume production facilities. Although aluminum and steel are more successful in reducing the weight of a vehicle, high-performance FRP composites can potentially outperform both aluminum and steel. The high cost of reinforcing materials, high processing costs, costly recycling processes, and the absence of mass production methods are some of the factors likely to restrain the market growth.
Enhancing the end-of-life value of composites through optimum recycling is likely to prove beneficial in improving the overall Life-cycle Assessment (LCA) score of composites. The EU End-of-Life Vehicle Directive for cars stipulates mandatory use and recycling 85% of vehicle components, although energy recovery of polymers is not considered as recycling.
Rising demand for fuel-efficient vehicles and increasing production of lightweight automobile components are some of the factors anticipated to prompt manufacturers to opt for backward integration in the value chain. Greater participation across the value chain is expected to result in the reduction of time required to transform raw materials into finished products, which, in turn, is likely to help in gaining cost advantage. Automotive composite manufacturers are expanding their production capacities and focusing on improving infrastructure to cater to growing market demand.
Polyamide, also known as nylon 6, exhibits superior resistance to abrasion and chemicals, which makes it a suitable material for applications requiring dimensional stability. Therefore, this resin type is used in gear and bushes. Polystyrene, despite being popular and easy to manufacture, exhibits poor resistance to UV light. Polyethylene is further categorized into Low-Density Polyethylene (LDPE) and High-Density Polyethylene (HDPE).
Polyurethane composites exhibit superior physical and mechanical properties such as lightweight, durability, flexibility, stability, and resistance to temperature and moisture. These factors are prompting automotive manufacturers to increase the adoption of such materials. Polyurethane composites are used in Structural RIM (SRIM) automotive exterior and interior parts such as inner door panels, roof modules, flaps, and lids.
Polypropylene composites are widely used in automotive components owing to low cost, chemical resistance, and UV stability. These are less costly in comparison to Acrylonitrile-butadiene-styrene (ABS) and Polycarbonate (PC). Due to UV stabilization, polypropylene composite parts do not require painting, which, in turn, reduces the cost of components by eliminating the painting process and improving the recyclability of vehicle parts.
The automotive polymer composites market has recently witnessed the penetration of hybrid designs of carbon and glass fiber reinforced products. For exterior employment, product laminates, which contain 50% carbon-fiber reinforcement, exhibit optimum flexural properties, whereas alternating glass/carbon lay-up assembly offers high compressive strength.
Fiberglass is mainly used to reduce the weight of a vehicle. Moreover, high tensile strength gives it an edge over other metals. Fiberglass is used in external body parts and dashboards. A shift in the trend toward the replacement of conventional heavy-weight metals with lightweight fiberglass for the manufacturing of automobiles is expected to drive the market over the forecast period.
Key players are establishing themselves across the value chain from raw material production, manufacturing, and distribution to maintaining the quality of raw material and gaining competitive advantage in terms of cost benefits with an increased profit margin. Technological advancements and research and development activities have become essential for companies to perform in the market owing to intense competition, rapid technological changes, and highly demanding customers.
Carbon fiber is expected to be the fastest-growing product owing to its strength and thickness. Carbon fibers are manufactured by aligning carbon atoms parallel to the long axis of the fiber. The process of aligning the fiber axis with carbon atom requires special-purpose material handling equipment and skilled labor. The inexpensive nature and unique strength of steel make it a suitable material. Crashworthiness is an important criterion in the selection of raw materials for use as an automotive lightweight material.
Epoxy resin has been in use as a structural glue for over 30 years in the automotive sector, one that replaces the necessity for welding. It is widely preferred by auto manufacturers owing to properties such as mechanical strength, heat resistance, and adhesion to metals. These properties help keep the car bodywork from corrosion and other damages. Epoxy resins are used as a coating for the car body, usually through Cathodic Electro Deposition (CED).
Polyurethanes are favored for achieving real-time benefits in terms of comfort, protection, and energy conservation. Durability, lightweight, and high strength make them an ideal material for use in interior cushioning as well as heat and noise insulation. Polyvinyl chloride has shown good resistance to chemical and solvent attacks. The vinyl content in polyvinyl chloride gives it good tensile strength, triggering its applications in automotive instrument panels, sheathing of electrical cables, pipes, and doors.
Advanced materials are yet to be widely recognized for their benefits such as lightweight and superior corrosion resistance. At present, the industry is making investments to upgrade the process for molding polymer composites using various forms of conventional E-glass in mid-level performance resins, namely thermosets and thermoplastics.
Electric vehicles are a combination of modern automotive technologies and lightweight automotive components. Composites are major components used in the production of electrical vehicles. The electric vehicles segment has some special requirements such as lightweight crashworthiness along with the Internet of Things (IoT).
Hybrid vehicles include a combination of two or more power sources. Switching power between two engine types reduces pollution and helps in saving fuel. Hybrid cars are generally more aerodynamic and lighter. The combustion engine in such vehicles is smaller in comparison to conventional vehicles. Hybrid vehicle manufacturers use lightweight materials to reduce weight and increase fuel efficiency. They are used in many parts of hybrid vehicles such as hoods, fenders, decklids, battery modules, floor pans, trunk compartments, and bumper beams.
Massive investments by EU in projects such as Composite Structural Power Storage for Hybrid Vehicles (STORAGE) and the introduction of several novel technologies are likely to benefit the industry. These technologies include improvement in the composition of multifunctional resin for supercapacitors, carbon aerogel reinforcements, and a mixture of epoxy resins and liquid electrolytes for matrix development. These advancements are projected to drive the demand for automotive polymer composites in electric vehicles.
Compression molding is a high-volume and high-pressure process, which is usually suitable for molding complex and high-strength fiberglass reinforcements. The benefits of compression molding include the capability to mold large and complex parts. The technique produces lesser knit lines and reduces fiber-length degradation in comparison to the injection molding method.
Injection molding plastics is the fastest-growing manufacturing process segment in the automotive polymer composites market. The process involves the manufacturing of molded products by injecting molten plastic materials into a mold and then solidifying them. Polyethylene, polypropylene, polyurethane, and others are the basic raw materials used in the production of automotive lightweight material.
Sheet Molding Compounds (SMC) or Sheet Molding Composites are both a process and reinforced composite material. They are a mixture of polyester resin and chopped glass strands in the form of a sheet. Compression or injection molding methods are used for the development of these compounds, which are further used to produce bodywork or structural automotive parts in large industrial volumes.
In 2016, Asia Pacific accounted for the largest market share in the automotive industry. The availability of low-cost raw materials, cheap labor, supportive government policies, and the presence of many untapped markets in emerging economies are factors driving the market growth. Steel is a major raw material used in the automotive lightweight materials industry. China, India, and Japan are the world’s top three steel producers. Automobile companies are establishing production facilities in this region to gain a competitive advantage in terms of low production cost and proximity to end-use markets.
In North America, composites are widely used in automotive applications. Chevrolet and Ford are major users of CFRP within the region. Chevrolet Corvette Stingray, Ford Viper SRT, and Mustang Shelby GT500KR are models that account for maximum usage of CFRP in North America. These are supplied by Plasan Carbon Composites to OEMs. Viper, Corvette, and Mustang use 26.7 kg, 15.5 kg, and 2.9 kg of composites, respectively.
High purchasing power, better infrastructure, and a high standard of living are some of the major advantages in the German economy. Population growth and rise in consumer income are anticipated to drive the overall demand for high-end products in Germany over the forecast period. The country accounted for approximately 28% of the total European automotive production in 2016. Increasing disposable income is boosting the purchasing power of consumers, thereby triggering demand for luxurious, comfortable, innovative, and environment-friendly products.
The growing population in the country has triggered the influx of new consumers, which helps the industry in expanding its operations and aids manufacturers in developing their consumer base by attracting new consumers with new offerings. Factors such as growth in the consumer segment and development in automotive production are likely to boost the automotive polymer composites market.
Top suppliers such as Dow Automotive Systems, Bayer Corporation, and 3M are focusing on increasing their global footprint. Companies are expanding their production facilities in emerging economies, such as China and India, to cater to increasing demand in the Asia Pacific.
Governments in various countries including Japan, U.S., Canada, China, South Korea, Mexico, Brazil, and India have issued fuel economy or greenhouse gas emission standards for passenger vehicles and light commercial vehicles or light trucks. Established regulations in Europe and North America have propelled the demand for composites from automotive manufacturers in these regions. Proposed regulations in these countries are expected to further fuel demand over the next eight years.
In 2016, the automotive polymer composites industry witnessed the involvement of market participants in umpteen strategic development plans, such as the acquisition of TenCate by Tennessee Acquisition B.V., Owens Corning’s facility expansion initiative in India, acquisition of GETRAG Group by Magna International, and introduction of Toho Tenax’s new integrated production system for CFRP.
Report Attribute |
Details |
Market size value in 2020 |
USD 8.37 billion |
Revenue forecast in 2025 |
USD 11.62 billion |
Growth Rate |
CAGR of 6.8% from 2017 to 2025 |
Base year for estimation |
2016 |
Historical data |
2014 - 2016 |
Forecast period |
2017 - 2025 |
Quantitative units |
Volume in tons, revenue in USD million and CAGR from 2017 to 2025 |
Report coverage |
Volume forecast, revenue forecast, company share, competitive landscape, growth factors and trends |
Segments covered |
Resin, product, application, end-use, manufacturing process, region |
Regional scope |
North America; Europe; Asia Pacific; Central & South America; Middle East & Africa |
Country scope |
U.S. Canada; Mexico; Germany; U.K.; France; Spain; Taiwan; China; India; Japan |
Key companies profiled |
Dow Automotive Systems; Bayer Corporation; 3M; Hexcel; Toray; Teijin |
Customization scope |
Free report customization (equivalent up to 8 analysts working days) with purchase. Addition or alteration to country, regional & segment scope. |
Pricing and purchase options |
Avail customized purchase options to meet your exact research needs. Explore purchase options |
This report forecasts revenue growth at a global, regional, and country-level and provides an analysis of industry trends in each of the sub-segments from 2014 to 2025. For this study, Grand View Research has segmented the global automotive polymer composites market report based on resin, product, application, end-use, manufacturing process, and region:
Resin Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
Epoxy
Polyurethane
Polyamide
Polypropylene
Polyethylene
Polyester
Vinyl Ester
Others
Composite Product Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
Carbon Fiber
Glass Fiber
Natural Fiber
Application Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
Interior Components
Exterior Components
Structural Components
Powertrain Components
End-use Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
Conventional Vehicles
Electric Vehicles
Trucks & Buses
Manufacturing Process Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
Compression Molding
Injection Molding
Sheet Molding
Resin Transfer Molding
Regional Outlook (Volume, Tons; Revenue, USD Million, 2014 - 2025)
North America
The U.S.
Canada
Mexico
Europe
Germany
U.K.
France
Spain
Asia Pacific
China
India
Japan
Taiwan
Central & South America
Middle East & Africa
b. The global automotive polymer composites market size was estimated at USD 7.83 billion in 2019 and is expected to reach USD 8.37 billion in 2020.
b. The global automotive polymer composites market is expected to grow at a compound annual growth rate of 6.8% from 2017 to 2025 to reach USD 11.62 billion by 2025.
b. Europe dominated the automotive polymer composites market with a share of 37.0% in 2019. This is attributable to high purchasing power, better infrastructure, and a high standard of living.
b. Some key players operating in the automotive polymer composites market include Dow Automotive Systems, Bayer Corporation, 3M, Hexcel, Toray, and Teijin.
b. Key factors that are driving the automotive polymer composite market growth include the presence of large-scale automotive production in Asia, increasing demand for lightweight and durable materials, and stringent regulations in the automotive industry.
GET A FREE SAMPLE
This FREE sample includes market data points, ranging from trend analyses to market estimates & forecasts. See for yourself.
NEED A CUSTOM REPORT?
We can customize every report - free of charge - including purchasing stand-alone sections or country-level reports, as well as offer affordable discounts for start-ups & universities.
Contact us now to get our best pricing.
ESOMAR certified & member
ISO Certified
We are GDPR and CCPA compliant! Your transaction & personal information is safe and secure. For more details, please read our privacy policy.
"The quality of research they have done for us has been excellent."
We value your investment and offer free customization with every report to fulfil your exact research needs.