Optogenetics Market Size, Share & Trends Report

Optogenetics Market Size, Share & Trends Analysis Report By Pigment Type, By Application, By Region, And Segment Forecasts, 2019 To 2025

  • Published Date: ---
  • Base Year for Estimate:
  • Report ID: GVR5263
  • Format: Electronic (PDF)
  • Historical Data:
  • Number of Pages: 0

The global optogenetics market is expected to witness significant growth over the forecast period. Optogenetics controls the neural activity with by combining genetic engineering and optical tools. Optogenetics is widely used in neuroscience for modulation of neural circuits with high degree of precision and specificity. Optogenetics have facilitates a wide range of experiments for better understanding of neural circuits in dysfunctional and normal behavior. Optogenetics offers an advantage over traditional methods due to its ability for provide spatial and temporal precision for cell targeting. The research work regarding development and applications of optogenetic tool is anticipated to witness a rapid progress in the next few decades. This can be attributed to technological advancements, increasing incidences of depression, mood disorders, social disorders, Parkinson’s disease and other related disorders. However, the lack of awareness, cost intensive technologies are some factors restraining the growth of optogenetics market.

The optogenetic actuators are the proteins which change their conformation when exposed to light resulting in altered cell behavior. These actuators can be used for either stimulation or inhibition of multiple or single action potentials. The most widely used actuators are opsins. These are naturally occurring transmembrane proteins. There are two types of opsins, type I were initially used for neural experiments and are currently used a source for engineered or natural opsins whereas Type II are primarily used for modulating vision and circadian rhythms. The opsins are also grouped as per their effects on neural signaling or activity namely stimulation of neural activity and inhibition of neural activity. Channelrhodopsins (ChRs) are the example of opsins with stimulatory activity whereas NpHR is an example of inhibitory opsin.

The light sources used for illuminating the neuron, lasers and light emitting diodes (LEDs). Lasers are most widely used illuminating source since they enable use of narrow bandwidth and can also be effectively used in combination with optical fibers. The combination of laser with optical fibers also facilitates application of optogenetics in deeper manipulation of brain structure. LEDs offer low cost alternative to optical stimulation. However, the low efficiency with optical fibers limits the use of LEDs for certain applications.

Applications of optogenetics for understanding of dysfunctional and normal behavior is widening rapidly. Optogenetics can be used to study the underlying factors in case of depression, anxiety, addictions, mood disorders, epilepsy, Parkinson disorders, memory disorders, cardiac disorders and others.

Some of the key players in the optogenetics market are Coherent Inc., Regenxbio Inc Thorlabs Inc, Noldus, Scientifica and Addgene

Pricing & Purchase Options

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities

Why Choose Us

  • Research support

    24/5 Research support

    Get your queries resolved from an industry expert.

  • Custom research service

    Custom research service

    Design an exclusive study to serve your research needs.

  • Quality assurance

    Quality assurance

    A testimonial for service in the form of BBB "A" Accreditation.

  • BBB Rating dandb
  • Information security

    Information security

    Your personal and confidential information is safe and secure.

  • grand view research PCI DSS complaint grand view research paypal verified